Blog

See the latest news, innovation updates, trial results, grower stories and more from Agricen. 
March 24, 2016 — Posted By Agricen

by Steve Sexton, Agricen

31-plant-soil-soybean-variety-selection-is-important-heres-whyGrowers today are confronted with a large number of fertilizer additive options, including agricultural biostimulants. Too often, some of these products are lumped into the same category, despite different modes of action and varying impacts on crop yields and return on investment (ROI).

Humic Acid Products

Humic acid products are biostimulant products derived from leonardite (low grade coal) that is reacted with potassium hydroxide (KOH) to create a black liquid containing organic acids—primarily fulvic and humic. These organic acids are either long- chained molecules (humic acid) or short-chained molecules (fulvic acid) that contain sites carrying a negative charge. When a grower adds humic acid to a production program, it acts like a bucket—it will hold positively charged nutrients by attracting them to the negatively charged sites on its molecules. However, humic acid cannot fill the bucket with the nutrients the plant needs. This is where biochemical or biostimulant products play a critical role.

Biochemical Products

Biochemical products for agriculture contain biochemical compounds—things like organic acids, chelators, and enzymes—as their primary functioning component. Released by natural microbial processes in the soil or by the addition of biochemical products such as Accomplish or Titan XC to existing fertilizer programs, biochemicals play a critical role in plant nutrition. Primarily, they act upon chemical compounds in the soil (e.g., calcium or iron phosphate) to separate cations (e.g., calcium, magnesium) from anions (e.g., nitrates, phosphates), thereby releasing nutrients into the soil solution. In essence, the biochemistry is like a water valve or tap— by releasing nutrients so that they can find locations on exchange sites or be utilized by plants, it fills the empty bucket created by an application of humic acid.

corn bucket Humic acid products create a reservoir for nutrients; Agricen's biochemical catalyst technologies release nutrients from chemical compounds in the soil, filling the reservoir and increasing the flow of available nutrients.

The biochemical components in Accomplish and Titan XC are derived through a proprietary fermentation process and then concentrated to provide a highly consistent, efficacious fertilizer catalyst that improves plant performance and increases crop yields, positively impacting the ROI of a grower’s total fertilizer program.

Summary

In summary, both humic acid and biochemical products are biostimulants that can play a role in a larger plant nutrition program. However, each acts very differently in the soil, with humic acid holding nutrients in place, while biochemical products break apart chemical compounds in the soil, making nutrients more available for the plant. Growers who want to maximize their fertility program may want to first apply Accomplish or Titan XC with their standard program before considering the addition of any straight humic or organic acid products.

Learn more about Accomplish and Titan XC by downloading our Biocatalyst Technology booklet.

Download the Booklet

 

Read More
March 14, 2016 — Posted By Agricen

ProveItToMepngWe are very excited to introduce Prove It to Me, a new film that follows five farmers through the 2015 growing season—from planning and planting to growth and harvest.

Each of the farmers featured in the film used Accomplish, Titan or both technologies as part of their program, and all speak about the results they achieved with our biocatalyst technology (Hint: It’s pretty darn good news!). We invite you to watch a Prove It to Meonline today.

None of the farmer testimonials were scripted or coached. Their thoughts on the products and practices are simply in their own words and, as you’ll see, a great testimony to using Accomplish and Titan as part of any growing program.

We hope you enjoy the film, and we would be happy to hear any feedback you might have.

Watch the Film

Read More
October 6, 2015 — Posted By Agricen

Grower Stories Brandon BurkhartBrandon Burkhart is a fourth-generation farmer from Oto, Iowa. Varying soils on his family's 2500-acre corn and soybean operation used to mean it was difficult to get a good, efficient use out of their applied nutrients. Today, Brandon and his family use Accomplish LM and Titan PBA to maximize their fertilizer efficiency, with excellent returns from the accompanying gains in yield. 

“When using our Accomplish LM and Titan PBA combination on corn, it’s been [a yield increase] upwards of 10 bushels or more,” says Brandon. “On our bean operations with just Titan PBA, we’ve seen jumps of 10 bushels per acre.”

“It’s been a great investment for us. It’s been a great return on investment also.”

See how Accomplish LM and Titan PBA are paying off for Brandon and his family. 

Watch the video: 

titan_video_testimonial
Watch More Featured Videos
Read More
July 23, 2015 — Posted By Agricen

Norman McPherson and M.H. Bitely are growers in Grady, Arkansas, who incorporated both Accomplish LM and Titan PBA into their fertility program for this year’s corn. Both growers applied Titan PBA on their dry fertilizer in the fall, and included Accomplish LM with their standard liquid starter fertilizers at planting.

The results so far are impressive.

Growers_Grady_Arkansas

Growers Norman McPherson and M.H. Bitely in Grady, Arkansas.


In fields where Accomplish LM and Titan PBA were added to the standard fertility program, corn had much smaller dents compared to corn from a nearby field they farm where Accomplish LM and Titan PBA weren’t used.

Smaller dents will add up to a lot more yield, says Norman.

Corn_Ears

With Accomplish LM and Titan PBA, corn ears show less denting.

 

Root digs reveal that the addition of Accomplish LM and Titan PBA also leads to significant improvements in root mass.

Corn_Roots

Significant gains in root mass with Accomplish LM and Titan PBA.

 

From these mid-season results, we expect to continue to see great things, as we have seen in other trials incorporating both Accomplish LM and Titan PBA into fertility programs on corn, soybeans, rice, and wheat.

We’ll follow up again with Norman and M.H. later in the season to share more details about their crops’ performance. 

 

Read More
March 20, 2015 — Posted By Agricen
Carl-Lamb-field-2

Third-generation farmer Carl Lamb  grows corn and soybeans in Dixon County, Nebraska. He farms nearly 3,000 acres on an operation started by his wife’s grandfather.

“It’s a challenging time to be a grower right now,” says Carl. “The inherent cost of putting a crop in today is huge.” 

Carl tried Titan to increase the nutrient availability in his soil and improve the health of his crops. He was impressed with both the results and the ROI.

“Agriculture is changing in a big way, and it’s changing very rapidly. If you’re not able to be more efficient with what you’re doing, you will fall behind,” says Carl. “With today’s marketplace the way it is, you need to get every bushel that you can from this crop.”

Hear how Titan is helping Carl get more bushels out of his acres. 

Watch the video:

Read More
September 25, 2014 — Posted By Agricen

By Brian Cornelious, PhD, Director of Applied Sciences 

corn_header-1

Everyone has a favorite ride at the amusement park. Some treasure the predictability of the carousel, while others seek the thrill of the rollercoaster.

The more I ponder on this analogy, the more I begin to think of farming. 

Some very traditional farmers live by the philosophy of “If it ain’t broke, don’t fix it,” while others ascribe to a more progressive approach of “It’s working pretty well, but I think I can make it even better.” Both ways of thinking have their benefits, but I speculate that we’ll need more of the latter philosophy as we move forward, especially in light of current conditions facing the modern farming industry.

Has Farming Been More Like a Carousel Ride or a Rollercoaster?

Let’s get back to the amusement park analogy for a moment and compare riding on the carousel versus rollercoaster from my own experiences with each:

carousel_table

I’m sure there are other things that you would add to the list, but, in the sense of what the farmer is facing today, I would bet the ride is more like the rollercoaster that the carousel, especially when you look at some of the major factors influencing crop production decisions:

  • Commodity prices
  • Fertilizer costs
  • Seed costs
  • Land cost
  • Equipment costs
  • Financing/operating capital
  • Weather patterns

We could go into great detail about each of these factors, but let’s focus on the impact that commodity prices have on fertility practices. Let’s also look at how some of the management decisions based on this single factor might affect the productivity and profitability of today’s farmer.

Saying Goodbye to $7/Bushel Corn

The years of $7/bushel corn have passed, and when they’ll return is anyone’s guess.  While the US farmer’s ability to produce record amounts of corn has been proven once again with the amazing 2014 crop, this record crop is placing pricing pressure on December new crop corn. Growers are now facing corn that’s under $4/bushel, and it may seem almost impossible to make a profit at this rate after figuring in production costs. This is giving many growers pause when it comes to any additional inputs beyond crop protection and their liquid or dry fertilizers. Some might even be thinking of scaling back on their fertility. What can growers do to stay profitable?

Nutrient Use Efficiency Is Key for Profitability

During periods of declining prices, it is critical to increase yields in order to lower the cost of production per bushel. That means increasing the efficiency of fertilizer inputs in the face of lower corn prices. This process will allow the grower to produce more bushels at a lower cost.

Most growers will apply dry phosphate (P) and potash (K) as a blend after harvest this fall.  Dry fertilizer is considered a standard input for corn production, even though only 20-30% of the phosphate and 20-60% of the potash is available to next spring’s corn crop.  The inefficiency of applied P & K isn’t really acceptable, but what can be done to improve nutrient use efficiency by releasing the P & K that get tied-up in the soil? 

Titan PBA Can Help Growers Get the Most Out of Their Dry Fertilizer Inputs

The answer is to add biochemical fertilizer catalyst technology found in Titan PBA.  In combination with a dry fertility program, Titan PBA increases the availability of applied nutrients and improves plant uptake and utilization.  The increased efficiency of the fertilizer as a result of the Titan PBA allows growers to realize higher yields—as seen in the data below—and lower production costs per bushel. 

corn_SDSU

corn_NorthSalem

corn_Bradford

corn_Stronghurst

I think most growers would agree that the past several years have been more like a rollercoaster ride than a carousel ride. However, uncertainty about commodity prices should not affect the attitudes towards using sound fertility programs to maintain or even increase yields. Adding biochemical technology to a dry fertility program can enhance nutrient use efficiency and increase yield potential—helping growers cope with the ups and downs of today’s rollercoaster ride.

Read More
September 22, 2014 — Posted By Agricen

By John Wolf, Director of Commercial Development, Agricen

Across most of the corn production area, 2014 has the potential be a banner year for yield. Given that higher average yields increase supply, economics dictate that prices will be somewhat lower without an accompanying increase in demand. This poses a dilemma for growers as they plan for next year’s crop.

With many growers producing more corn than usual (and probably more than they fertilized for), overall soil nutrient levels are likely to drop as nutrient removal rates surpass what was applied ahead of the crop. Faced with commodity price pressures, growers are unlikely to increase their traditional dry fertilizer rates, even though they will probably need more nutrition to overcome high nutrient removal rates from this year’s excellent yields. This means there is a great risk that growers won’t supply next year’s crops with enough nutrients. 

The best choice for growers is to apply the appropriate fertilizer rate to maintain adequate soil nutrition levels as indicated by a soil test.  For growers who simply don’t want to bear the added cost of increased fertilizer rates, increasing the first-year recovery rates of the fertilizers they do apply may be a cost-effective alternative.

First-year recovery rates for applied dry N,P & K are generally accepted to be:

•   N +/-50%
•   P +/- 25%
•   K +/- 50%

By including a cost-effective biochemical product like Titan PBA—which increases the rate at which applied dry nutrients are converted to inorganic forms (N&P) that can be utilized by growing crops—growers can improve their first-year nutrient recovery rates and ensure that next year’s crop has the potential for another banner harvest.

corn_milroy

This corn trial from Minnesota is a good example of the benefits Titan PBA can bring to growers when applied in the fall along with dry fertilizer.

Read More
June 16, 2014 — Posted By Agricen

The soil is a living environment, full of microorganisms that create biochemical compounds that influence plant growth. At Agricen, we take this biochemistry and make it work even better for the grower, with benefits that include improved plant performance and increased nutrient availability.

In this short video, Agricen’s Director of Applied Sciences, Dr. Brian Cornelious, explains how the biochemistry in Accomplish LM and Titan PBA works to make the difference between having a good growing season and having a great growing season.


 

 
Dr. Brian Cornelious: Everybody knows where our food comes from. It’s right here on the farm. But do we really understand what it takes for a grower to get the most out of every acre he plants? In the next couple of minutes, I’m going to show you how a grower can use the biochemistry in Accomplish LM and Titan PBA to feed our growing population.

[Onscreen: “Agricen. Based on Nature Built on Science.” Then: “The Science Behind It All”]

Brian: The soil is a living environment, full of organisms producing biochemical compounds that influence plant growth. I’m holding just a couple grams of soil. Each gram of soil contains as many as 1 billion bacteria. At Agricen, we have a team of scientists working to make this biochemistry work even better for the grower.

[Onscreen: “The Lab: Where It All Starts”]

Brian: We’re here in the lab, and this is where we really get to understand how the biochemistry in Accomplish LM and Titan PBA actually help to improve our plant performance and increase our nutrient availability.

So, there are key nutrients we’re going to talk about today: nitrogen, phosphorous and potassium.

For nitrogen – the most abundant gas in the atmosphere – we have to have nitrogen to breathe; plants have to have nitrogen to grow. If you want that dark green color, add more nitrogen to the plant. Nitrogen, for the most part in the soil profile, is organic. We have to convert organic nitrogen—which is crop residues, manures, litters, composts, any of those organic sources—into ammonium or nitrate or inorganic forms the plant can use. It’s called the mineralization process. Biochemistry is the only thing in the soil profile that actually helps to mineralize organic nitrogen into an inorganic form that the plants can use.

What about phosphorous? If you really want to get that plant going, it’s just like lighting a match. We have to have red phosphate on that match to get that thing going. The phosphorous in the plant really helps with the establishment and getting that plant going and off to a good start. Again, we’re dealing with mineralization. Lots of phosphorous in the soil profile is inorganic. We have to get it into H2POor HPO4, plant available forms of phosphorous.

What about potassium? Now, you’re probably familiar with this. If you eat bananas, you’re consuming potassium. Potassium helps the plant with regulation of water through the plant. You have to have potassium. It’s a little bit different from nitrogen and phosphorous. We’re not talking about mineralization of organic nutrients. We’re talking about release of nutrients that are in the profile. It gets locked in between the soil layers and it’s not available to the plant. The biochemistry in Accomplish LM can actually help improve that soil structure that helps improve that plant’s ability to take up that potassium.

There’s one more way that Accomplish LM and Titan PBA work to improve crop growth. Titan and Accomplish make the underground transportation system of nutrients much more efficient. It’s the difference between this [Points to slow traffic] and this [Traffic speeds up].

[Onscreen: “Dr. Pepper Ballpark: Home of the Frisco Rough Riders”]

Brian: To further explain the benefits of adding the biochemistry in Accomplish LM and Titan PBA to a grower’s fertility program, we’re here at the ballpark. So, let’s play ball.

The initial fertilizer application – that puts us at home plate. There’s several things that have to happen in order for us to score that run. First, the soil temperatures have to increase. That gets us to first base.

After those temperatures increase, microbes start to function. They’re producing biochemistry now. That gets us to second base. There’s something important about second base in a game of baseball. That’s having a runner in scoring position. With the biochemistry in Accomplish LM and Titan PBA, we start at second base.

Brian: Once the biochemistry helps to mineralize the nutrients, that gets us to third base. The plants are actually taking those nutrients up. Now the plants can actually utilize those nutrients for functioning and yield. And that scores that run. But, with the biochemistry in Accomplish LM and Titan, we’ve got that advantage. We’re scoring two runs with the same process.

As growers know, things are tight. Adding the biochemistry in Accomplish LM and Titan PBA can be the difference in just having a good season, and having a great season.

Brian: At Agricen, it’s important for us to deliver new technology options to allow the grower to get the most out of every acre he plants. The biochemistry in Accomplish LM and Titan PBA improve access of nutrients to the plant, more flow of nutrients in the plant, and also increases the efficiency of utilization of nutrients by the plant.

At Agricen, our technology truly is based on nature and built on science. I’m Brian Cornelious. Thank you for watching.

field

Read More
February 28, 2014 — Posted By Agricen

starter_headerIn this short video, Steve Sexton and Dr. Brian Cornelious of Agricen discuss the use of starter fertilizer, the importance of phosphorus for early plant growth, and the need make sure nutrient availability and uptake are optimized for maximum starter program impact.

Watch the video below:

 

 

Read More
September 24, 2013 — Posted By Agricen

spreader-1

As summer fades, many growers around the country are starting to think about how to best implement and manage their fall dry fertilizer programs. Before the spreaders take to the field, growers will need to answer a number of important questions, from “What type of fertilizer to choose?” to “Am I trying to maintain or build nutrient levels in the soil?”

The majority of growers who apply dry phosphorus (P) and potassium (K) fertilizers in the fall will also have two other major concerns:

  • What amount of applied fertilizer will become or remain available to the crop in the following growing season?
  • How can I get better first-year recovery out of my fall dry fertilizer application?

One way for growers to answer these questions and make management decisions is by understanding the efficiency of P and K fertilizers. In this blog, we will talk more about P and K fertilizer efficiency and about some ways to help growers get better first-year nutrient recovery.

Satisfying the Nutrient Demands of Hybrid Corn: Are We Doing Enough?

Even though the use of commercial inorganic fertilizers has risen dramatically in the past 50 years to try to meet the nutrient demands of hybrid corn, soil test information from the International Plant Nutrition Institute (IPNI) suggests that growers are not keeping up with P and K demands of new high-yielding corn varieties.

Today, a 200-bushel corn crop requires 256 units of nitrogen (N), 103 units of P, and 263 units of K (these units take into account NPK in corn residue).1 But as grain production increases, the demand for NPK also increases. In spring and summer seasons with ample moisture, corn yields can surpass the 200 bushel/acre mark by as much as 20-50 bushels/acre, leading to a drawdown of soil P and K levels because the fertilizer application was calculated and applied for the 200 bushel/acre yield.

To illustrate this phenomenon, Figure 1 below shows the changes in P and K levels in the Corn Belt from 2005-2010.2 All of the Corn Belt states experienced a reduction in soil P levels from 2005 compared to 2010, and most states declined in soil K levels as well.

median_soil_levels

Figure 1. Median soil P and K levels (50 percent of samples are above and below these levels) for the Corn Belt states and Ontario. The lower numbers in the maps are the changes from 2005. (Source: IPNI Corn Belt Fertility Study: 2010)

Another alarming issue is the inefficiency of our applied P and K fertilizers. Figure 2 below reveals the stark inefficiency of applied P fertilizers and the wide range of efficiencies for applied K fertilizers.

table

Figure 2. First-year nutrient efficiency/recovery. (Source: IPNI)

Many US growers make a dry application of P and K fertilizer in the spring or fall.

Unfortunately, because of the circumstances described above, many of these growers are not going to get the first-year P and K efficiency and recovery they need.

How can growers increase the availability of applied P and K to meet crop demands?

The Answer May Be in the Soil Chemistry and Biochemistry

To help answer that question, there are a few important points to remember about interactions that occur in the soil-plant system when dry fertilizers are applied:

  • Essential crop nutrients are taken up into plant roots as positively charged cations or negatively charged anions (e.g., Ca+2, NO3-).
  • The soil itself has a net negative charge and attracts or holds positively charged cations on cation exchange sites (cation exchange capacity, CEC).
  • Negatively charged anions like nitrate have a high propensity to move below the plant root zone if excessive soil moisture is present.
  • Chemical reactions (soil chemistry) also play an important role in the formation of compounds that are vital to plant growth.
  • Strong attractions among cations, anions, and other compounds can prevent plants from accessing essential nutrients (e.g., when Ca+2 & Fe+2 bind to PO4).

When faced with these interactions, we must rely on the biochemical compounds produced by microorganisms to react with and release the bound nutrients, making them available for plant uptake and utilization.

Titan, a biochemical fertilizer catalyst, can be incorporated into a grower's existing dry fertilizer program to increase P and K availability and improve plant uptake. The concentrated biochemistry in Titan works in the soil profile to aid the mineralization of organic nitrogen and phosphorus into inorganic forms plants use. It also helps to improve soil issues to allow the release of bound potassium from the soil layers. This means that more of the applied fertilizer will become or remain available to the crop in the following growing season, helping growers answer a crucial management question. Figure 3 shows some examples of the results of using Titan with dry P and K blends.

charts

Figure 3. Results with Titan impregnated on dry fertilizer.

Conclusions

The days may be getting shorter, but with some simple planning, it’s easy to get more nutrient recovery from any fall dry fertilizer application. The end result is increased crop yields and total economic return from your growing program.

References:

  1. Sutch R. (2011). The Impact of 1936 Corn Belt Drought on American Farmers’ Adoption of Hybrid Corn. In: Libecap GD and Steckel RH, eds. The Economics of Climate Change: Adaptations Past and Present (p. 195 - 223) Chicago, Illinois: University of Chicago Press.
  2. Mosaic Company's Nutrient Removal App. Available at: http://www.agprofessional.com/news/Mosaic-introduces-new-nutrient-removal-data-app-135169923.html.
  3. IPNI Corn Belt Fertility Study: 2010

 

Read More