Blog

See the latest news, innovation updates, trial results, grower stories and more from Agricen. 
August 4, 2015 — Posted By Agricen

This year, many parts of the country dealt with above-average to excessive spring rains. Wet conditions set the stage for denitrification (converting nitrogen in the soil system into N2 gas) and nitrate leaching, which may explain some of the yellowing growers have observed in fields where there has been a lot of moisture.  

Starter fertilizer use can help to overcome some of this nitrogen loss by adding nitrogen back into the system. Other crop inputs can also pay off. Accomplish LM can be used in a starter blend to ensure that more of the applied nitrogen or nitrogen in the soil system is in a form that is readily available for plant uptake.   

In the field trials we’ve seen this season, the difference between starter and no starter was very obvious. Starter applications that included Accomplish LM have been giving a very strong performance, as seen in these corn trials from Wheatland, Indiana. 

Corn - Wheatland, Indiana (2015)

starter_vs_nostarter

Starter vs. no starter fertilizer; Photo taken May 27, 2015

 

Corn - Wheatland, IN (2015)

corn_wheatland_IN-2

Accomplish LM applied at 1 qt/acre; RiseR FA applied at 2.5 gals/acre; Sniper LFR applied at 3.2 oz/acre

 

Corn - Wheatland, IN (2015)

corn_wheatland_IN-3

Accomplish LM applied at 1 qt/acre; Black Label Zn applied at 3 gals/acre; Sniper LFR applied at 3.2 oz/acre

 

Learn more about starter fertilizers and how Accomplish LM can enhance corn starter programs. Download “Improving Crop Yields with Starter Fertilizers.”

Read More
July 23, 2015 — Posted By Agricen

Norman McPherson and M.H. Bitely are growers in Grady, Arkansas, who incorporated both Accomplish LM and Titan PBA into their fertility program for this year’s corn. Both growers applied Titan PBA on their dry fertilizer in the fall, and included Accomplish LM with their standard liquid starter fertilizers at planting.

The results so far are impressive.

Growers_Grady_Arkansas

Growers Norman McPherson and M.H. Bitely in Grady, Arkansas.


In fields where Accomplish LM and Titan PBA were added to the standard fertility program, corn had much smaller dents compared to corn from a nearby field they farm where Accomplish LM and Titan PBA weren’t used.

Smaller dents will add up to a lot more yield, says Norman.

Corn_Ears

With Accomplish LM and Titan PBA, corn ears show less denting.

 

Root digs reveal that the addition of Accomplish LM and Titan PBA also leads to significant improvements in root mass.

Corn_Roots

Significant gains in root mass with Accomplish LM and Titan PBA.

 

From these mid-season results, we expect to continue to see great things, as we have seen in other trials incorporating both Accomplish LM and Titan PBA into fertility programs on corn, soybeans, rice, and wheat.

We’ll follow up again with Norman and M.H. later in the season to share more details about their crops’ performance. 

 

Read More
March 14, 2015 — Posted By Agricen

In a previous post, we got to know Jim and Janet Orr, fourth generation farmers from Iowa. In this blog post, we meet their sons, Jamie and Jason, who continue the family tradition in farming and agriculture.

 Jason_Orr_Acreage

 

Jamie and Jason Orr grew up on their parents’ Century Farm near Rowley, Iowa. Growing up in a farming family instilled a strong work ethic and respect for the land.

“I can’t remember a time when I wasn’t outside helping my folks,” says Jamie. “There were chores before and after school. I fed the hogs, helped pick rocks out of fields, and ran equipment pretty early on.”

“We were always working,” Jason adds. “I even slept on the floor of my dad’s combine when he drove it. Farming is in our blood.”

Download the Accomplish LM Booklet

Farming Inspires Ag Careers

Although both men grew up helping their parents on the farm, they would end up working in different sectors of agriculture.

Jamie first worked at AgVantage FS, an agriculture and energy supplier. He then joined Crop Production Services (CPS) in 2005, where he is currently the General Manager of the Western Illinois Division.

“I enjoy talking to growers, finding out what makes them successful and bring them new ideas to make them even more profitable” says Jamie.

Jason, meanwhile, completed a college program in agriculture, then began farming land located two miles from his parents’ farm. He now grows continuous corn on 375 acres and manages three hog buildings, each with 2400 hogs.

Science and Technology Drive Farming

“These days, you can’t grow without science and technology,” says Jason. “I plant disease-resistant seeds and use GPS mapping and a yield monitor to observe field conditions. I also use the Internet to stay up to date on the latest technologies, trends and opportunities. These are the tools that help me make better decisions and be a better grower.”

Jason was introduced to the biochemical technology in Accomplish LM by Jamie, who saw the first-hand benefits in CPS trials throughout Illinois and Wisconsin.

“I first tried Accomplish LM in 2013, applying it on 182 acres of corn. I left 30 acres untreated,” says Jason. “We harvested five bushels more per acre on the treated acres. Based on those results, I’ve continued to use it.”

“All farmers value quality products and healthy crops, and they’re looking for ways to be as efficient and profitable as possible,” says Jamie. “It’s not just for the money, although we all know that’s important. It’s also to feed the hungry world.”

Learn more about Accomplish LM and how it benefits farming operations by downloading the Accomplish LM booklet

Download the Booklet

 

Read More
November 18, 2014 — Posted By Agricen


snow_residueHere we discuss why your crop residue is valuable and how your farm can benefit from a post-harvest application of EXTRACT. 

Q: I mostly consider my residue to be a nuisance. Do I need to rethink that view?

A: Given where prices are, growers are really going to have to focus to make money next year. Residue can play an important role in helping to achieve that. Residue doesn't have to be just another obstacle to deal with when you're trying to get your crop planted. By releasing the nutrients locked up in your crop stubble, you get more ROI out of your original nutrient investment by benefitting next season's crop. We recommend that you rethink your residue as an important component of the planning process for next year's crop. 

Q: What is the value of my residue?

A: Here's a great example of the value of residue. If you're a corn producer, for every bushel of corn you grow, your residue contains an average of 0.45 lbs of N, 0.16 lbs of P, and 1.1 lbs of K. If you had a 200-bushel crop in 2014, that's an NPK value of 90-32-220. Think about how valuable those nutrients can be if you can release them in time for spring planting.

Q: With a big harvest, how should I deal with all of my post-harvest residue? What's a good way to speed residue breakdown and access the nutrients in my stubble?

A: Many growers turn to fall tillage or a fall nitrogen application to help them speed residue breakdown. Although tillage does a good job of physically breaking up the residue and increasing the surface area that microbes have to work on, it has little direct influence on the mineralization of nutrients trapped in residue. Nitrogen can provide some benefits, but lack of sufficient N is not the main limiting factor for residue breakdown–soil temperatures are, since microbial activity, which is what produces the biochemistry needed to break down crop residue, drastically drops off below 50 degrees F. This is why we recommend a post-harvest application of EXTRACT – which contains biochemistry that enhances residue breakdown, nutrient release and nutrient mineralization, even at lower temperatures – to help you capture the value of your residue. 

Learn more about the benefits of a residue application of EXTRACT by reading the our crop residue booklet.

Download the Booklet

Read More
September 22, 2014 — Posted By Agricen

By John Wolf, Director of Commercial Development, Agricen

Across most of the corn production area, 2014 has the potential be a banner year for yield. Given that higher average yields increase supply, economics dictate that prices will be somewhat lower without an accompanying increase in demand. This poses a dilemma for growers as they plan for next year’s crop.

With many growers producing more corn than usual (and probably more than they fertilized for), overall soil nutrient levels are likely to drop as nutrient removal rates surpass what was applied ahead of the crop. Faced with commodity price pressures, growers are unlikely to increase their traditional dry fertilizer rates, even though they will probably need more nutrition to overcome high nutrient removal rates from this year’s excellent yields. This means there is a great risk that growers won’t supply next year’s crops with enough nutrients. 

The best choice for growers is to apply the appropriate fertilizer rate to maintain adequate soil nutrition levels as indicated by a soil test.  For growers who simply don’t want to bear the added cost of increased fertilizer rates, increasing the first-year recovery rates of the fertilizers they do apply may be a cost-effective alternative.

First-year recovery rates for applied dry N,P & K are generally accepted to be:

•   N +/-50%
•   P +/- 25%
•   K +/- 50%

By including a cost-effective biochemical product like Titan PBA—which increases the rate at which applied dry nutrients are converted to inorganic forms (N&P) that can be utilized by growing crops—growers can improve their first-year nutrient recovery rates and ensure that next year’s crop has the potential for another banner harvest.

corn_milroy

This corn trial from Minnesota is a good example of the benefits Titan PBA can bring to growers when applied in the fall along with dry fertilizer.

Read More
September 17, 2014 — Posted By Agricen

By Fred E. Below, PhD, Professor of Plant Physiology, Department of Crop Sciences, University of Illinois at Urbana-Champaign

below-thumb

Agronomic advancements have brought corn yields to new heights, but producers have had little guidance on how to meet the nutrient requirements of modern, high-yield corn hybrids in a way that maximizes their yields. As a result, the high yields we see today have been accompanied in many places across the United States by a significant drop in soil nutrient levels, particularly phosphorus (P), potassium (K), sulfur (S) and zinc (Zn). This combination—higher yielding hybrids and decreasing soil fertility levels—suggests that producers have not sufficiently matched their maintenance fertilizer applications with nutrient uptake and removal by the corn.

By better understanding nutrient uptake and partitioning, producers can optimize their fertilization practices to meet their crop needs and attain maximum yield potential. I’ll focus here primarily on the uptake, partitioning, and utilization of P and K by corn.


Download the Biocatalyst Technology FAQ


Typical fertilization for corn in the United States is 180 lbs of N, 90 lbs of P2O5 and 160 lbs of K20 per acre, with no S or micronutrients. For modern corn hybrids in high-yielding systems, mineral nutrients with high requirements for production (i.e., nitrogen [N], P, K) or with a high harvest index (HI: the percentage of total plant uptake that is removed with the grain) (i.e., N, P, S, Zn) are important for obtaining high corn yield (Table 1).1 

below_blog_1

Producers must consider the impact of increased grain and stover nutrient removal on the next crop and employ appropriate fertilizer strategies to ensure that adequate nutrients are available to the crop. Phosphorus is probably one of the most overlooked nutrients, and most farmers are not putting out enough. In relation to total uptake, nearly 80% of P is removed in corn grain, while K is retained to a higher percentage in stover.

Production practices that utilize above-ground stover (i.e., cellulosic ethanol, silage production) may remove an additional 20.8 lbs of N, 4.0 lbs of P2O5, and 23.3 lbs of K2O per ton of dry matter, along with micronutrients. While farmers in Illinois, for example, fertilize 93 lbs P2O5 per acre, on average, for corn production2, the large majority (~80%) of soybean fields receive no applied P. As a result, they would have only the remaining 13 lbs/acre of P2O5 available for soybean production in a corn–soybean rotation3, where P and K fertilizer are commonly applied for both crops in the corn production year. This value would be inadequate to meet soybean P needs for total uptake (48 lbs/acre P2O5) or nutrient removal (30 lbs/acre P2O5) based on a conservative yield estimate of 46 bushels/acre in Illinois.4 Clearly, typical fertilization practices may need to be adjusted to meet crop nutrient needs.

Mineral nutrients are not all acquired at the same time or used in the same way by corn plants, and some require season-long uptake by corn roots for the crop to achieve a high yield. During the V10 to V14 growth stages, 230 bushel corn requires 7.8 lbs of N, 2.1 lbs of P2O5 and 5.4 lbs of K2O per day, but these needs change at other times. To optimize their programs, producers need fertilizer sources that supply nutrients at the rate and time that match their plants’ nutritional needs.

Potassium accumulates more than three-fourths of total uptake by VT/R1 (Figure 1)1, while over 50% of total P uptake occurs during grain fill (after VT/R1) (Figure 2)1, in addition to remobilization of 57% and 77% of the maximum measured leaf P and stalk P contents, respectively. This suggests that a season-long supply of P is critical for corn nutrition, while availability of K at levels that can meet the maximum rates of uptake during early season vegetative growth would be expected to meet corn nutritional needs, since the majority of K uptake occurs during vegetative growth. Thus, practices that are effective for one nutrient may not improve uptake of the other.

below_blog_2.png

below_blog_3

Nutrient management is complex, but improved fertilizer use can be achieved by understanding patterns of nutrient uptake, partitioning, and utilization. Producers should pay special attention to P requirements as productivity increases, as current data suggest a looming soil fertility crisis if adequate adjustments are not made in P usage rates. Agronomic advancements have brought corn yields to new heights, but understanding how to maintain soil nutrient levels can go a long way in helping to sustain high yields.

---

Learn how biocatalyst technologies can improve nutrient availability and uptake to help meet the nutrient needs of corn and other crops by downloading the Biocatalyst Technology FAQ Booklet.

Download the Biocatalyst Technology FAQ

 

References:

  1. Bender RR, Haegele JW, Ruffo ML, Below FE. 2013. Nutrient uptake, partitioning, and remobilization in modern, transgenic insect-protected maize hybrids. Agron. J. 105:161–170.
  2. National Agriculture Statistics Service (NASS), United States Department of Agriculture. Fertilizer and Chemical Usage. 2011. Illinois Farm Report. 32:8.
  3. NASS. Fertilizer, Chemical Usage, and Biotechnology Varieties. 2010. Bulletin As11091, Illinois Agricultural Statistics.
  4. Usherwood, N.R. 1998. Nutrient management for top-profit soybeans. News and views. Bulletin RN 98105. Potash and Phosphate Inst., Int. Plant Nutrition Inst., Norcross, GA.
Read More
March 12, 2014 — Posted By Agricen

By Daniel Kaiser, PhD, University of Minnesota

In areas where spring is cool and wet, banding fertilizer with the planter can benefit corn crops. Although application of dry fertilizer with the corn planter has played an important role historically, it has become less common with increasing acreages and planter sizes. Instead, liquid fertilizers have steadily replaced dry for supplying nutrients to the corn plant early in the growing season.

Dan Kaiser

The primary benefit of applying low rates of fertilizer directly on the corn seed is more rapid growth early in the growing season. Increased early growth can be viewed as an insurance policy, ensuring that plants reach critical periods of growth faster. Low rates of phosphorus can significantly increase the amount of growth, even in fields where soil phosphorous test levels are high. Our research in Minnesota has demonstrated that as little at 10 lbs P2O5 applied with the planter can produce sizeable increases in plant mass early in the growing season. This increase has been shown to speed development and decrease the time to silking by one to two days.

Despite large increases in early plant mass, the probability of an increase in grain yield when using traditional starter sources is low in our experience in Minnesota, occurring roughly 10-15% of the time in soils testing high in phosphorus. And, once soils warm, the potential yield benefits of banded nutrients can decrease. At this time, the potential for an increase in yield is typically dictated by the presence or absence of a deficiency in one or more nutrients. Trials conducted over three years in Southern Minnesota that utilized a starter containing nitrogen, phosphorus, and potassium (and compared to potassium alone), clearly showed the benefits of starter phosphorus for increasing early plant mass, but also demonstrated that increases in grain yield were due to elements such as potassium or sulfur. The magnitude of yield response was not related to the magnitude of increased early plant growth, reinforcing the disconnect between responses early in the growing season and potential increases in corn grain yield. In other words, a 50% increase in biomass does not necessarily translate into a 50% increase in yield.

Due to the added cost of fertilizer, producers that use starter must weigh all options when deciding where money should be spent. Current Minnesota fertilizer guidelines indicate that small rates of nutrients applied in a starter can supply crop needs when soils test high for phosphorous or potassium. However, if soils test low, the amount of fertilizer that can safely be applied with the seed may be too low to match crop needs. In these situations, additional broadcast phosphorous or potassium is warranted. If broadcast phosphorous or potassium is applied at high enough rates, there is little benefit of additional nutrients applied in a starter fertilizer, but what has not yet been addressed is whether broadcast phosphorous or potassium rates can be reduced sufficiently to make the cost more economical. However, since other benefits of starter include reduced grain moisture—which can range from an average decrease of 0.5% to as much 1.0-1.5% in extreme circumstances—this alone can be enough to pay for the cost of some fertilizer sources, especially in years when grain is wetter in the fall.

Over time, we have learned what to expect when banding nutrients with corn seed. Our experience in Minnesota shows that while a grain yield response is possible when banding nutrients with corn seed, a grain moisture response is much more likely. In addition, while starter (banded) potassium can provide a higher chance of return, it simply may not be economical compared to broadcast applications.

Read More
March 11, 2014 — Posted By Agricen

After a career in finance made him realize he didn’t want to spend his days sitting behind a desk, Chad Wetzel of Wetzel Farms in Grayson County, Texas, returned to his farming roots. Today, this third-generation family farmer has approximately 7,000 acres in a corn and wheat rotation.

Hear how using Accomplish LM has helped him gain a corn yield advantage in the challenging Texas dryland environment, and learn why he’s planning on using this product on additional acres.

Watch the video:

 

Read More
December 19, 2013 — Posted By Agricen

By Stephen Sexton, Director of Technical Sales (@AgricenLifer), Agricen

This season, with high corn yields and a late harvest in many places, it will be critical to take steps to maximize residue decomposition and nutrient release for the benefit of next seasons’ crops. It’s important to keep in mind that the primary limiting factor for residue decomposition is cooler temperatures, which reduce the microbial activity required for residue breakdown. Given the late harvest, that means there's only been a short window for natural decomposition processes to take place. In addition, larger yields produce more residue, which requires more time and energy to properly break down.

We’ve previously discussed just how inefficient applied NPK fertilizers can be in the first year after application, a problem that is compounded in high-residue fields.

Corn residue from a 200 bushel crop contains approximately 116 units of nitrogen (N), 27 units of phosphorous (P) and 209 units of potassium (K). Nutrients in the residue are not in a plant-available form, and mineralization must occur prior to plant utilization. Meanwhile, as soil microbes digest crop residues, they can tie up applied N, making it unavailable for plant growth in the spring. In corn, the lack of N causes corn seedlings (emergence to V3-V4) to turn yellow, also known as “ugly corn syndrome.”

To increase the efficiency of their applied fertilizer in high-residue conditions, many growers are now using Accomplish LM (a biochemical fertilizer catalyst that is not dependent on soil microbial activity) in their nutrient release programs—and are seeing higher yields as a result. Applied in the fall (preferably) or even along with a grower’s standard spring N application, Accomplish LM hastens residue decomposition and mineralization of applied nutrients. This practice is supported by data that includes the findings from a large corn trial conducted in five Northeast Iowa locations in 2010 and 2011.

Iowa Corn Trial: More Nutrient Availability and Uptake, Higher Yields with Accomplish LM

The trial examined the effects of using additional spring-applied N or Accomplish LM (which does not contain N) to address ugly corn syndrome. Four different N sources were used*, and were applied at 40 units of N per acre in late March, 30 days prior to planting. The Accomplish LM treatment was applied at 3 pints per acre with water and no additional N. These applications were in addition to the grower’s standard N application (200 units of N as anhydrous ammonia [NH3]) that had been applied in the fall.

Soil nitrate levels were recorded for each treatment 60 days after planting, and stalk nitrate levels were taken after harvest. The soil nitrate concentration of Accomplish LM (20.6 ppm) was almost three times that of the grower standard (7 ppm). In addition, the Accomplish LM treatment was associated with the lowest stalk nitrate reading of all the treatments (Table 1).

Those two data points, coupled with the Accomplish LM treatment having the highest yield, tell a compelling story that the application of Accomplish LM on the residue created more available N (higher soil nitrate) than applying 40 additional units of N–resulting in improved mineralization of nutrients–and that it delivered that N to the grain (lower stalk nitrate and higher yield).

stalk_tests

Table 1. By late spring, Accomplish LM increased soil N availability without additional N application.

In 2010, Accomplish LM had the highest yield (221 bushels per acre) over all treatments, with an 12 bushel per acre increase compared to the check (Figure 1). In 2011, Accomplish LM again had the highest yield (255 bushels per acre, a 15 bushel/acre increase vs. check). Moreover, while nitrogen use efficiency (units of N/yield in bushels) was not improved for the additive fertilizer applications versus grower standard (0.96 units N/bushel in 2010 and 0.83 units in 2011), it was increased with Accomplish LM (0.90 units N/bushel in 2010 and 0.78 units in 2011).

residue-blog-1

Figure 1. Corn yield results in 2010 (left bars) and 2011 (right bars). Accomplish LM was associated with the highest average yields in both years. The grower’s standard practice was 200 units of N as fall-applied NH3. Accomplish LM was applied at 1.5 quarts/acre. Abbreviations: GSP, grower’s standard practice; MESZ, MicroEssentials® SZ (Mosaic Company); UAN, urea ammonium nitrate; AMS, ammonium sulfate.

In 2011, soil phosphorous levels (P1 & P2) were examined (Table 2).

soil_ppm

Table 2. Improved P availability when Accomplish LM is combined with a standard fertility program.

Just 60 days after application, all of the Accomplish LM treated blocks showed increased soil phosphorous levels. On average, P1 levels increased by 18% and P2 levels by 31% compared to the check. It requires 8-10 pounds of P2O5 to raise a P1 soil analysis 1 ppm; a 13 ppm increase, which was achieved with the Accomplish LM treatment, is equal to applying 100 - 130 lbs of P2O5.

To summarize, Accomplish LM can be used to help mineralize and release nutrients in high residue fields. Over all five Iowa locations, adding just three pints of this biochemical additive 30 days prior to spring planting increased the efficiencies of soil N and soil P, resulting in the highest overall corn yields both years.

* The four N sources were: urea ammonium nitrate (UAN), 28-0-0; ammonium sulfate (AMS), 21-0-0-24S; MicroEssentials® SZ (MESZ), 12-40-0-10(S)-1(Zn) (Mosaic Company); urea, 46-0-0.

**The recommended Accomplish LM residue treatment application is: Accomplish LM at 2 quarts/acre (+1-2 gallons of 28% or 32% UAN + 8.5 gallons of water).

Read More
September 24, 2013 — Posted By Agricen

spreader-1

As summer fades, many growers around the country are starting to think about how to best implement and manage their fall dry fertilizer programs. Before the spreaders take to the field, growers will need to answer a number of important questions, from “What type of fertilizer to choose?” to “Am I trying to maintain or build nutrient levels in the soil?”

The majority of growers who apply dry phosphorus (P) and potassium (K) fertilizers in the fall will also have two other major concerns:

  • What amount of applied fertilizer will become or remain available to the crop in the following growing season?
  • How can I get better first-year recovery out of my fall dry fertilizer application?

One way for growers to answer these questions and make management decisions is by understanding the efficiency of P and K fertilizers. In this blog, we will talk more about P and K fertilizer efficiency and about some ways to help growers get better first-year nutrient recovery.

Satisfying the Nutrient Demands of Hybrid Corn: Are We Doing Enough?

Even though the use of commercial inorganic fertilizers has risen dramatically in the past 50 years to try to meet the nutrient demands of hybrid corn, soil test information from the International Plant Nutrition Institute (IPNI) suggests that growers are not keeping up with P and K demands of new high-yielding corn varieties.

Today, a 200-bushel corn crop requires 256 units of nitrogen (N), 103 units of P, and 263 units of K (these units take into account NPK in corn residue).1 But as grain production increases, the demand for NPK also increases. In spring and summer seasons with ample moisture, corn yields can surpass the 200 bushel/acre mark by as much as 20-50 bushels/acre, leading to a drawdown of soil P and K levels because the fertilizer application was calculated and applied for the 200 bushel/acre yield.

To illustrate this phenomenon, Figure 1 below shows the changes in P and K levels in the Corn Belt from 2005-2010.2 All of the Corn Belt states experienced a reduction in soil P levels from 2005 compared to 2010, and most states declined in soil K levels as well.

median_soil_levels

Figure 1. Median soil P and K levels (50 percent of samples are above and below these levels) for the Corn Belt states and Ontario. The lower numbers in the maps are the changes from 2005. (Source: IPNI Corn Belt Fertility Study: 2010)

Another alarming issue is the inefficiency of our applied P and K fertilizers. Figure 2 below reveals the stark inefficiency of applied P fertilizers and the wide range of efficiencies for applied K fertilizers.

table

Figure 2. First-year nutrient efficiency/recovery. (Source: IPNI)

Many US growers make a dry application of P and K fertilizer in the spring or fall.

Unfortunately, because of the circumstances described above, many of these growers are not going to get the first-year P and K efficiency and recovery they need.

How can growers increase the availability of applied P and K to meet crop demands?

The Answer May Be in the Soil Chemistry and Biochemistry

To help answer that question, there are a few important points to remember about interactions that occur in the soil-plant system when dry fertilizers are applied:

  • Essential crop nutrients are taken up into plant roots as positively charged cations or negatively charged anions (e.g., Ca+2, NO3-).
  • The soil itself has a net negative charge and attracts or holds positively charged cations on cation exchange sites (cation exchange capacity, CEC).
  • Negatively charged anions like nitrate have a high propensity to move below the plant root zone if excessive soil moisture is present.
  • Chemical reactions (soil chemistry) also play an important role in the formation of compounds that are vital to plant growth.
  • Strong attractions among cations, anions, and other compounds can prevent plants from accessing essential nutrients (e.g., when Ca+2 & Fe+2 bind to PO4).

When faced with these interactions, we must rely on the biochemical compounds produced by microorganisms to react with and release the bound nutrients, making them available for plant uptake and utilization.

Titan, a biochemical fertilizer catalyst, can be incorporated into a grower's existing dry fertilizer program to increase P and K availability and improve plant uptake. The concentrated biochemistry in Titan works in the soil profile to aid the mineralization of organic nitrogen and phosphorus into inorganic forms plants use. It also helps to improve soil issues to allow the release of bound potassium from the soil layers. This means that more of the applied fertilizer will become or remain available to the crop in the following growing season, helping growers answer a crucial management question. Figure 3 shows some examples of the results of using Titan with dry P and K blends.

charts

Figure 3. Results with Titan impregnated on dry fertilizer.

Conclusions

The days may be getting shorter, but with some simple planning, it’s easy to get more nutrient recovery from any fall dry fertilizer application. The end result is increased crop yields and total economic return from your growing program.

References:

  1. Sutch R. (2011). The Impact of 1936 Corn Belt Drought on American Farmers’ Adoption of Hybrid Corn. In: Libecap GD and Steckel RH, eds. The Economics of Climate Change: Adaptations Past and Present (p. 195 - 223) Chicago, Illinois: University of Chicago Press.
  2. Mosaic Company's Nutrient Removal App. Available at: http://www.agprofessional.com/news/Mosaic-introduces-new-nutrient-removal-data-app-135169923.html.
  3. IPNI Corn Belt Fertility Study: 2010

 

Read More