Blog

See the latest news, innovation updates, trial results, grower stories and more from Agricen. 
November 19, 2012 — Posted By AMSPressMaster

Residue field

by Steve Sexton, Director, Eastern Region, Agricen

There has been a lot of discussion with respect to nutrient utilization (or lack thereof) during the drought this past summer and the amount of nutrients that are tied up or bound in crop residue. What percentage of these nutrients will be available for next season's crop growth?

Below is a nutrient removal chart for 200 bushel corn, tracking what is removed by the grain and what is left behind in the stalk/residue. Typically, there’s a great deal of potassium (about 80% of the applied K) left in the crop residue after harvest, along with 40% of the applied nitrogen and 25% of the applied phosphorous. At today's prices, these tied-up nutrients have a value of over $125 per acre!

Corn at 200 Bushels

Corn at 200 bushels

Chart produced using The Mosaic Company’s Nutrient Removal App.
For more information and resources, please visit their “
Back to Basics” soil fertility site.

What options are available to growers who want to access these nutrients?

One accepted practice has been to apply 10-15 gallons of UAN after harvest in the fall to assist with microbial decomposition of crop residue and to accelerate nutrient release. The downfall of this approach is that microbial decomposition slows and eventually stops as soil temperatures drop below 40° F.

Today, we also have a biochemical fertilizer catalyst, Accomplish® LM, which works to release tied-up nutrients (regardless of soil temperatures) and increase crop yields—all for a lower price than a fall UAN application. (See 2012 Jacksonville, Illinois Corn on Corn Trial).

Mid-Vegetation Stages – 2012 Jacksonville, IL Continuous Corn Trial

Residue - Treated vs. Untreated

Please call your Crop Production Service (CPS) retail representative or Loveland Products representative for more information on Accomplish LM.

Read More
October 17, 2012 — Posted By Agricen

 

View of corn fields and farms in Southern York County, Pennsylvania.Scientists from Agricen and the University of North Texas researchers analyzed soil associated with corn roots collected from a field study of corn conducted at the University of Arkansas, where plots had received a range of fertilizer types and application rates.

They then compared bacterial biomass and diversity in the rhizosphere (e.g., in soil loosely associated with the root ball) and the rhizoplane (e.g., in soil washed from root surfaces) – areas where plants and soil microbes interact.

By applying next-generation sequencing to characterize the bacterial community, they found that bacterial biodiversity varied with the different fertility regimens and between the rhizosphere and rhizoplane.

This work provides one of the first comprehensive studies of the corn microbiome. The microbiome appears important in stimulating plant growth and protecting the crop from pathogens and environmental stressors. Understanding the controls of this important system could lead to new approaches to improve productivity and maintain soil health.

The work was presented as a poster at the ASA, CSSA and SSSA International Annual Meetings: Bacterial Diversity in Rhizosphere and Rhizoplane of Field Corn Grown with Different Fertilization Regimes (Poster presentation; Abstract #128-5).

Read More
April 6, 2012 — Posted By Agricen

corn_and_soil1In continuous no-till corn, crop residues with a high carbon-to-nitrogen (C:N) ratio (about 60:1) can build up. When this happens, the soil microorganisms responsible for decomposing crop residue compete with the plant for nitrogen. A C:N ratio of 30:1 or lower is required for the soil microorganisms to effectively decompose crop residues without immobilizing the soil nitrogen needed by the growing plants.

Some growers have tried to address this issue by applying additional nitrogen to the soil to lower the C:N ratio, minimize microbial competition for plant nitrogen, and improve corn yield.

In 2010 and 2011, agronomists from Pioneer conducted field studies on corn at five locations in Iowa to investigate whether adding an additional ~40 lbs nitrogen/acre above the grower’s standard fertility rate would reduce microbial competition for nitrogen, improve cornstalk nitrate-nitrogen levels, and increase yield.

The grower’s standard nitrogen rate was 200 lbs N/acre. Additional nitrogen (above the standard rate) was supplied using four different nitrogen-containing fertilizers. Accomplish® LM, a biochemical product that does not include nitrogen, was also included in this study, and was compared to the additional nitrogen sources. The six treatments in the studies were:

  • Grower’s standard N (200 lbs N/acre) (control)
  • Grower’s standard N + Accomplish® LM (Loveland Products) at 1.5 quarts/acre (no additional N)
  • Grower’s standard N + urea ammonium nitrate (UAN, 28-0-0) at 39 lbs/acre
  • Grower’s standard N + ammonium sulfate (AMS, 21-0-0-24S) at 41 lbs/acre
  • Grower’s standard N +  MicroEssentials® SZ (MESZ; Mosaic Company; 12-40-0-10(S)-1(Zn) analysis) at 41 lbs/acre
  • Grower’s standard N + urea (46-0-0) at 39 lbs/acre

Treatments were applied in late March of both years. In 2010, soil nitrate testing was performed in late spring and stalk nitrate evaluations were made from each treatment strip in late fall. In 2011, soil phosphate (P) availability was determined, rather than nitrate.

When soil nitrate levels were averaged across the five Iowa locations in 2010, Accomplish LM treatment was associated with the highest soil nitrate levels (20.6 ppm), indicating that more of the applied N from the grower’s standard treatment was available in the soil with Accomplish—and no additional nitrogen—compared to the other treatments where additional nitrogen was applied on top of the standard fertility rate (Fig. 1).

Soil and Stalk Nitrate Tests

Figure 1. Accomplish LM increased soil N availability without additional N application in late spring.

At the end of the 2010 season, stalk nitrate was lowest in Accomplish LM-treated plants (Fig. 1), but the average yield was highest with this treatment (Fig. 2), results that were repeated in the 2011 growing season (Fig. 2). These results indicate that more of the applied nitrogen was taken up by the crop and utilized for grain production with Accomplish LM, rather than remaining in the stalks.

Corn – Northeast IA

Figure 2. The average corn yields in the two years of the trial were highest with Accomplish LM vs additional N application.

Phosphorus analysis of the soil at five locations in 2011 indicated that, on average, more P was available to plants in the Accomplish LM-treated plots compared to the plants grown in plots with the other treatments, including those with additional N and P applications (Fig. 3). This P increase was observed with two extraction methods: Bray P1 (analyzes for readily available P) and Bray P2 (analyzes for P that is in a plant-available form, but more difficult for the plant to take up from the soil). Thus, Accomplish LM was shown to be more efficient in keeping P available to the crop.

Improved P Availability

Figure 3. Improved P availability when Accomplish LM is combined with a standard NPK fertility program.

Based on two years of field studies conducted at several locations in Iowa, Pioneer agronomists demonstrated that Accomplish LM, when combined with a grower’s standard fertility program, can increase both soil N and P availability for corn and increase crop yields.

The nutrient release technology in the original Accomplish LM formulation is today found in Accomplish MAX (for use with in-furrow liquid starter fertilizers), Titan XC (for use on dry fertilizers) and Extract PBA (for use in liquid broadcast applications).

Learn more about these technologies by downloading the biocatalyst technology booklet.

Download the Booklet

 

Read More
November 2, 2011 — Posted By Agricen

This summer, Agricen conducted a rhizobox study near our Texas headquarters to evaluate the effects of treating MicroEssentials® SZ, the Mosaic Company’s 12-40-0-10(S)-1(Zn) fertilizer, with Titan Powered by Accomplish (Titan PBA), a fertilizer catalyst from Loveland Products.

Corn, wheat and soybean seeds were planted in rhizoboxes in field soil with either MicroEssentials SZ fertilizer treated with Titan PBA (treated) or a standard monoammonium phosphate (MAP) 11-52-0 fertilizer (control). Root and shoot growth were observed over a four-week period. This was during a particularly hot time in the Texas summer, with temperatures regularly exceeding 100 degrees.

As you can see from the comparisons at Day 24, treated crops had noticeably better lateral root development and shoot growth compared to controls:


Corn

Improved lateral root development
Improved lateral root development at Day 24 for
treated vs. untreated.
 
Improved shoot growth
Improved shoot growth at Day 24 for treated vs.
untreated.

Wheat

Improved lateral root development (2)
Improved lateral root development at Day 24 for
treated vs. untreated.
 
Improved shoot growth (2)
Improved shoot growth at Day 24 for treated vs.
untreated.

Soybean

Improved lateral root development (3)
Improved lateral root development at Day 24 for
treated vs. untreated.
 
Improved shoot growth (3)
Improved shoot growth at Day 24 for treated vs.
untreated.

Plants in the treated boxes also had earlier lateral root development compared to controls throughout the four-week growing period. Watch the root growth day-by-day in our video, below:

Titan makes use of Agricen’s biologically sourced technology to increase fertilizer availability and improve overall plant health. 

Learn more by downloading the Titan product booklet.

Download the Titan XC Booklet

Read More
October 14, 2011 — Posted By Agricen

Low-angle view of corn fieldAgricen presented data on SoilBuilder at the 2011 ASA, CSSA and SSSA International Annual Meetings. SoilBuilder is Agricen’s base biochemical fertilizer catalyst technology for the agriculture industry.

In a 3-year field study conducted at Arise Research and Discovery (Martinsville, IL), SoilBuilder reduced nitrate leaching from soil applications of urea ammonium nitrate (UAN) – in addition to improving nitrogen use efficiency and corn yields – when incorporated into an integrated nutrient management program on corn. The data was discussed during an oral presentation: Increased Nitrogen Use Efficiency and Reduced Nitrate Leaching Using SoilBuilder AF in an Integrated Nutrient Management Program on Corn (Abstract #387-3).

Data from a separate study on SoilBuilder, conducted by researchers from Auburn University, was also presented: Microbial Inoculants as Tools for Reducing Nitrous Oxide Emissions from Soil (Oral presentation; Abstract #288-4).

Read More
September 13, 2011 — Posted By Agricen

Reducing a fertilizer’s leachable nitrates allows the fertilizer to act more efficiently. It also helps protect our water resources.

In a three-year lysimeter study, we evaluated the ability of SoilBuilder™, our base fertilizer catalyst platform, to increase corn yields by converting fertilizer nitrogen (N) into a less leachable form. The study was conducted at the field research facilities of Arise Research & Discovery, Inc., in Illinois.

SoilBuilder-treated fertilizer was compared to untreated fertilizer (control) over three growing seasons. Corn yield and nitrate leaching were evaluated. Each treated area (SoilBuilder vs. control) included four rows of field corn (row length: 30 ft; row spacing: 30 in; seed rate: 30,000/acre. The volume of leachable water and nitrate-nitrogen (NO3-N) concentrations in the water were determined six times during each season following pumping of the lysimeter wells.

In each of the three seasons, adding SoilBuilder to fertilizer increased yields over the control (Table 1). It was also associated with a significant reduction in nitrate leaching compared to the control (Table 2).

SoilBuilder - Fertilizer Increased Yields

The average rate of nitrate leaching during the 2008 growing season is shown in Figure 1.

Average rate of nitrate leaching

Overall, this field trial shows the ability of SoilBuilder to convert fertilizer nitrogen into a less leachable form that is more available for crop nutrition.

It is just one of the many projects we do at Agricen to demonstrate that our biologically sourced tools can effectively increase crop yields.

Read More