<img height="1" width="1" style="display:none" src="https://www.facebook.com/tr?id=301879849994395&amp;ev=PageView&amp;noscript=1">

Blog

See the latest news, innovation updates, trial results, grower stories and more from Agricen. 
January 3, 2012 — Posted By Agricen

Agricen has been working with the Institute of Food and Agricultural Sciences (IFAS) at the University of Florida to evaluate the effects of our biochemical-based technology, found in plant nutrition tools such as Loveland Products’ Accomplish LM, on tomato yields. The most recent data show that adding Accomplish LM to a plant nutrition program for tomatoes significantly increases fruit yields and size.

Field studies were conducted in Fall 2010 and Spring 2011. In both studies, tomato plants were transplanted to field plots treated with a standard NPK fertilizer alone (“control”) or standard NPK plus Accomplish LM (“treated”). Accomplish LM was applied at transplant (3 quarts/acre) and then two weeks later at the same rate.

In 2010, Accomplish LM treatment was associated with a 3% increase in total seasonal yield (two harvests) compared to the control. Notably, there was a statistically significant increase in total fruit, large fruit, and extra large fruit picked from Accomplish LM-treated plots at the second harvest (improvements of 5.7%, 18% and 6.9%, respectively, for treated vs. control plots).

In 2011, Accomplish LM treatment was associated with a 25% increase in total seasonal yield compared to the control (Figure 1). Moreover, an increase in the number of extra large fruit picked from Accomplish LM-treated plots at both harvests led to a statistically significant, 39.9% overall increase in the yield of extra large fruit.

Tomatoes - University of Florida

Figure 1. Accomplish LM applied at 3 quarts/acre at transplanting and 3 quarts/acre two weeks later led to a significant increase in total seasonal yield and in the yield of extra large fruit compared to control (NPK fertilizer alone)

We are pleased to see the data demonstrating the power of Accomplish technology as a tool for tomato growers who want to improve their yields more sustainably.

Read More
November 28, 2011 — Posted By Agricen

This fall, the University of North Texas and Agricen announced that they will be collaborating on research into plant-microbe relationships in agricultural systems. Employing next-generation sequencing, the joint research program will focus on better understanding the role that microbial diversity plays in building and sustaining crop production.

With this new collaboration, the University of North Texas now joins other Agricen academic research partners, including Auburn University, the University of Kentucky, and Texas A&M University.

Read More
November 2, 2011 — Posted By Agricen

This summer, Agricen conducted a rhizobox study near our Texas headquarters to evaluate the effects of treating MicroEssentials® SZ, the Mosaic Company’s 12-40-0-10(S)-1(Zn) fertilizer, with Titan Powered by Accomplish (Titan PBA), a fertilizer catalyst from Loveland Products.

Corn, wheat and soybean seeds were planted in rhizoboxes in field soil with either MicroEssentials SZ fertilizer treated with Titan PBA (treated) or a standard monoammonium phosphate (MAP) 11-52-0 fertilizer (control). Root and shoot growth were observed over a four-week period. This was during a particularly hot time in the Texas summer, with temperatures regularly exceeding 100 degrees.

As you can see from the comparisons at Day 24, treated crops had noticeably better lateral root development and shoot growth compared to controls:


Corn

Improved lateral root development
Improved lateral root development at Day 24 for
treated vs. untreated.
 
Improved shoot growth
Improved shoot growth at Day 24 for treated vs.
untreated.

Wheat

Improved lateral root development (2)
Improved lateral root development at Day 24 for
treated vs. untreated.
 
Improved shoot growth (2)
Improved shoot growth at Day 24 for treated vs.
untreated.

Soybean

Improved lateral root development (3)
Improved lateral root development at Day 24 for
treated vs. untreated.
 
Improved shoot growth (3)
Improved shoot growth at Day 24 for treated vs.
untreated.

Plants in the treated boxes also had earlier lateral root development compared to controls throughout the four-week growing period. Watch the root growth day-by-day in our video, below:

Titan makes use of Agricen’s biologically sourced technology to increase fertilizer availability and improve overall plant health. 

Learn more by downloading the Titan product booklet.

Download the Titan XC Booklet

Read More
October 14, 2011 — Posted By Agricen

Low-angle view of corn fieldAgricen presented data on SoilBuilder at the 2011 ASA, CSSA and SSSA International Annual Meetings. SoilBuilder is Agricen’s base biochemical fertilizer catalyst technology for the agriculture industry.

In a 3-year field study conducted at Arise Research and Discovery (Martinsville, IL), SoilBuilder reduced nitrate leaching from soil applications of urea ammonium nitrate (UAN) – in addition to improving nitrogen use efficiency and corn yields – when incorporated into an integrated nutrient management program on corn. The data was discussed during an oral presentation: Increased Nitrogen Use Efficiency and Reduced Nitrate Leaching Using SoilBuilder AF in an Integrated Nutrient Management Program on Corn (Abstract #387-3).

Data from a separate study on SoilBuilder, conducted by researchers from Auburn University, was also presented: Microbial Inoculants as Tools for Reducing Nitrous Oxide Emissions from Soil (Oral presentation; Abstract #288-4).

Read More
September 13, 2011 — Posted By Agricen

Reducing a fertilizer’s leachable nitrates allows the fertilizer to act more efficiently. It also helps protect our water resources.

In a three-year lysimeter study, we evaluated the ability of SoilBuilder™, our base fertilizer catalyst platform, to increase corn yields by converting fertilizer nitrogen (N) into a less leachable form. The study was conducted at the field research facilities of Arise Research & Discovery, Inc., in Illinois.

SoilBuilder-treated fertilizer was compared to untreated fertilizer (control) over three growing seasons. Corn yield and nitrate leaching were evaluated. Each treated area (SoilBuilder vs. control) included four rows of field corn (row length: 30 ft; row spacing: 30 in; seed rate: 30,000/acre. The volume of leachable water and nitrate-nitrogen (NO3-N) concentrations in the water were determined six times during each season following pumping of the lysimeter wells.

In each of the three seasons, adding SoilBuilder to fertilizer increased yields over the control (Table 1). It was also associated with a significant reduction in nitrate leaching compared to the control (Table 2).

SoilBuilder - Fertilizer Increased Yields

The average rate of nitrate leaching during the 2008 growing season is shown in Figure 1.

Average rate of nitrate leaching

Overall, this field trial shows the ability of SoilBuilder to convert fertilizer nitrogen into a less leachable form that is more available for crop nutrition.

It is just one of the many projects we do at Agricen to demonstrate that our biologically sourced tools can effectively increase crop yields.

Read More