Blog

See the latest news, innovation updates, trial results, grower stories and more from Agricen. 
December 22, 2013 — Posted By Agricen

Accomplish technology can be used to help release and mineralize nutrients in high residue fields. Given the high potassium levels in corn stover and the high potassium demand for a soybean crop, this is a perfect situation for using a residue application of Accomplish technology to improve plant performance (Figures 1-3) and gain a yield advantage in the coming soybean crop (Figure 4).

residue-blog-2

Figure 1. Soybeans, Wimbledon, ND (2011). Improved nutrient uptake in soybean treated with fall-applied Accomplish LM (right) compared to check (left). Accomplish LM was applied in the fall of 2010 at 2 quarts/acre with 1 gallon of 28% UAN and 10 gallons of water per acre**.

residue-blog-3

Figure 2. Soybeans, Wimbledon, ND (2011). Improved nutrient uptake and root growth during the growing season with a fall residue application of Accomplish LM (right) compared to check (left). Accomplish LM was applied in the fall of 2010 at 2 quarts/acre with 1 gallon of 28% UAN and 10 gallons of water per acre**.

residue-blog-4

Figure 3. Soybeans, Wimbledon, ND (2011).Improved nutrient uptake with a fall residue application of Accomplish LM (right) compared to check (left). Accomplish LM was applied in the fall of 2010 at 2 quarts/acre with 1 gallon of 28% UAN and 10 gallons of water per acre**.

residue-blog-5

Figure 4. Soybean yield results, Wall Lake, Iowa (2008). Accomplish LM was associated with the highest yield compared to check (average yield from two check strips adjacent to the Accomplish LM-treated strip) in this trial of soybean grown on corn residue.

Residue applications can be made in the fall, winter, or spring. By using Accomplish technology in their nutrient mineralization programs, growers can speed residue breakdown and release valuable nutrients for a top soybean yield next season.

**Extract PBA, which combines Accomplish LM and ammonium thiosulfate, has been launched since the writing of this blog article. It is now the recommended residue treatment from Agricen.**

Read More
December 19, 2013 — Posted By Agricen

By Stephen Sexton, Director of Technical Sales (@AgricenLifer), Agricen

This season, with high corn yields and a late harvest in many places, it will be critical to take steps to maximize residue decomposition and nutrient release for the benefit of next seasons’ crops. It’s important to keep in mind that the primary limiting factor for residue decomposition is cooler temperatures, which reduce the microbial activity required for residue breakdown. Given the late harvest, that means there's only been a short window for natural decomposition processes to take place. In addition, larger yields produce more residue, which requires more time and energy to properly break down.

We’ve previously discussed just how inefficient applied NPK fertilizers can be in the first year after application, a problem that is compounded in high-residue fields.

Corn residue from a 200 bushel crop contains approximately 116 units of nitrogen (N), 27 units of phosphorous (P) and 209 units of potassium (K). Nutrients in the residue are not in a plant-available form, and mineralization must occur prior to plant utilization. Meanwhile, as soil microbes digest crop residues, they can tie up applied N, making it unavailable for plant growth in the spring. In corn, the lack of N causes corn seedlings (emergence to V3-V4) to turn yellow, also known as “ugly corn syndrome.”

To increase the efficiency of their applied fertilizer in high-residue conditions, many growers are now using Accomplish LM (a biochemical fertilizer catalyst that is not dependent on soil microbial activity) in their nutrient release programs—and are seeing higher yields as a result. Applied in the fall (preferably) or even along with a grower’s standard spring N application, Accomplish LM hastens residue decomposition and mineralization of applied nutrients. This practice is supported by data that includes the findings from a large corn trial conducted in five Northeast Iowa locations in 2010 and 2011.

Iowa Corn Trial: More Nutrient Availability and Uptake, Higher Yields with Accomplish LM

The trial examined the effects of using additional spring-applied N or Accomplish LM (which does not contain N) to address ugly corn syndrome. Four different N sources were used*, and were applied at 40 units of N per acre in late March, 30 days prior to planting. The Accomplish LM treatment was applied at 3 pints per acre with water and no additional N. These applications were in addition to the grower’s standard N application (200 units of N as anhydrous ammonia [NH3]) that had been applied in the fall.

Soil nitrate levels were recorded for each treatment 60 days after planting, and stalk nitrate levels were taken after harvest. The soil nitrate concentration of Accomplish LM (20.6 ppm) was almost three times that of the grower standard (7 ppm). In addition, the Accomplish LM treatment was associated with the lowest stalk nitrate reading of all the treatments (Table 1).

Those two data points, coupled with the Accomplish LM treatment having the highest yield, tell a compelling story that the application of Accomplish LM on the residue created more available N (higher soil nitrate) than applying 40 additional units of N–resulting in improved mineralization of nutrients–and that it delivered that N to the grain (lower stalk nitrate and higher yield).

stalk_tests

Table 1. By late spring, Accomplish LM increased soil N availability without additional N application.

In 2010, Accomplish LM had the highest yield (221 bushels per acre) over all treatments, with an 12 bushel per acre increase compared to the check (Figure 1). In 2011, Accomplish LM again had the highest yield (255 bushels per acre, a 15 bushel/acre increase vs. check). Moreover, while nitrogen use efficiency (units of N/yield in bushels) was not improved for the additive fertilizer applications versus grower standard (0.96 units N/bushel in 2010 and 0.83 units in 2011), it was increased with Accomplish LM (0.90 units N/bushel in 2010 and 0.78 units in 2011).

residue-blog-1

Figure 1. Corn yield results in 2010 (left bars) and 2011 (right bars). Accomplish LM was associated with the highest average yields in both years. The grower’s standard practice was 200 units of N as fall-applied NH3. Accomplish LM was applied at 1.5 quarts/acre. Abbreviations: GSP, grower’s standard practice; MESZ, MicroEssentials® SZ (Mosaic Company); UAN, urea ammonium nitrate; AMS, ammonium sulfate.

In 2011, soil phosphorous levels (P1 & P2) were examined (Table 2).

soil_ppm

Table 2. Improved P availability when Accomplish LM is combined with a standard fertility program.

Just 60 days after application, all of the Accomplish LM treated blocks showed increased soil phosphorous levels. On average, P1 levels increased by 18% and P2 levels by 31% compared to the check. It requires 8-10 pounds of P2O5 to raise a P1 soil analysis 1 ppm; a 13 ppm increase, which was achieved with the Accomplish LM treatment, is equal to applying 100 - 130 lbs of P2O5.

To summarize, Accomplish LM can be used to help mineralize and release nutrients in high residue fields. Over all five Iowa locations, adding just three pints of this biochemical additive 30 days prior to spring planting increased the efficiencies of soil N and soil P, resulting in the highest overall corn yields both years.

* The four N sources were: urea ammonium nitrate (UAN), 28-0-0; ammonium sulfate (AMS), 21-0-0-24S; MicroEssentials® SZ (MESZ), 12-40-0-10(S)-1(Zn) (Mosaic Company); urea, 46-0-0.

**The recommended Accomplish LM residue treatment application is: Accomplish LM at 2 quarts/acre (+1-2 gallons of 28% or 32% UAN + 8.5 gallons of water).

Read More
November 21, 2013 — Posted By Agricen

By Brian Cornelious, PhD, Director of Applied Sciences (@BrianNPK), Agricen

Agriculture is my passion, and I like to share that passion with others, especially with young adults who are contemplating possible career choices. My grandfather and father were farmers, so I grew up with agriculture in my blood. This led me to major in agronomy in college, which I followed up by pursuing a master’s degree and PhD in plant breeding and genetics. I have been working in private industry since then.

I have frequently had the pleasure of speaking at career orientation days to junior high students. One of my first questions to any group of young people is, “What comes to your mind when you hear the word agriculture?” In agriculture-based communities, farming is often the main answer. Many children there understand that it’s an important profession and calling.

Another question I like to ask is, “What do these careers – doctor, lawyer, farmer and dentist – have in common?” The answer, of course, is that students who major in agriculture as college undergraduates can move into any of these other fields, since many of the necessary college courses, especially chemistry and biology, are relevant to all. This answer surprises some people, who perhaps don’t realize the level of scientific and technical knowledge that farmers have and use daily.

In agriculture, we are facing the growing need to produce more to meet demands for food and fuel. We need farmers, educators, researchers, and scientists to make it happen. What do your children want to be when they grow up? I encourage you to talk to them about the importance of agriculture and the many opportunities they have to make a difference in this field.

plant2

Read More
September 24, 2013 — Posted By Agricen

spreader-1

As summer fades, many growers around the country are starting to think about how to best implement and manage their fall dry fertilizer programs. Before the spreaders take to the field, growers will need to answer a number of important questions, from “What type of fertilizer to choose?” to “Am I trying to maintain or build nutrient levels in the soil?”

The majority of growers who apply dry phosphorus (P) and potassium (K) fertilizers in the fall will also have two other major concerns:

  • What amount of applied fertilizer will become or remain available to the crop in the following growing season?
  • How can I get better first-year recovery out of my fall dry fertilizer application?

One way for growers to answer these questions and make management decisions is by understanding the efficiency of P and K fertilizers. In this blog, we will talk more about P and K fertilizer efficiency and about some ways to help growers get better first-year nutrient recovery.

Satisfying the Nutrient Demands of Hybrid Corn: Are We Doing Enough?

Even though the use of commercial inorganic fertilizers has risen dramatically in the past 50 years to try to meet the nutrient demands of hybrid corn, soil test information from the International Plant Nutrition Institute (IPNI) suggests that growers are not keeping up with P and K demands of new high-yielding corn varieties.

Today, a 200-bushel corn crop requires 256 units of nitrogen (N), 103 units of P, and 263 units of K (these units take into account NPK in corn residue).1 But as grain production increases, the demand for NPK also increases. In spring and summer seasons with ample moisture, corn yields can surpass the 200 bushel/acre mark by as much as 20-50 bushels/acre, leading to a drawdown of soil P and K levels because the fertilizer application was calculated and applied for the 200 bushel/acre yield.

To illustrate this phenomenon, Figure 1 below shows the changes in P and K levels in the Corn Belt from 2005-2010.2 All of the Corn Belt states experienced a reduction in soil P levels from 2005 compared to 2010, and most states declined in soil K levels as well.

median_soil_levels

Figure 1. Median soil P and K levels (50 percent of samples are above and below these levels) for the Corn Belt states and Ontario. The lower numbers in the maps are the changes from 2005. (Source: IPNI Corn Belt Fertility Study: 2010)

Another alarming issue is the inefficiency of our applied P and K fertilizers. Figure 2 below reveals the stark inefficiency of applied P fertilizers and the wide range of efficiencies for applied K fertilizers.

table

Figure 2. First-year nutrient efficiency/recovery. (Source: IPNI)

Many US growers make a dry application of P and K fertilizer in the spring or fall.

Unfortunately, because of the circumstances described above, many of these growers are not going to get the first-year P and K efficiency and recovery they need.

How can growers increase the availability of applied P and K to meet crop demands?

The Answer May Be in the Soil Chemistry and Biochemistry

To help answer that question, there are a few important points to remember about interactions that occur in the soil-plant system when dry fertilizers are applied:

  • Essential crop nutrients are taken up into plant roots as positively charged cations or negatively charged anions (e.g., Ca+2, NO3-).
  • The soil itself has a net negative charge and attracts or holds positively charged cations on cation exchange sites (cation exchange capacity, CEC).
  • Negatively charged anions like nitrate have a high propensity to move below the plant root zone if excessive soil moisture is present.
  • Chemical reactions (soil chemistry) also play an important role in the formation of compounds that are vital to plant growth.
  • Strong attractions among cations, anions, and other compounds can prevent plants from accessing essential nutrients (e.g., when Ca+2 & Fe+2 bind to PO4).

When faced with these interactions, we must rely on the biochemical compounds produced by microorganisms to react with and release the bound nutrients, making them available for plant uptake and utilization.

Titan, a biochemical fertilizer catalyst, can be incorporated into a grower's existing dry fertilizer program to increase P and K availability and improve plant uptake. The concentrated biochemistry in Titan works in the soil profile to aid the mineralization of organic nitrogen and phosphorus into inorganic forms plants use. It also helps to improve soil issues to allow the release of bound potassium from the soil layers. This means that more of the applied fertilizer will become or remain available to the crop in the following growing season, helping growers answer a crucial management question. Figure 3 shows some examples of the results of using Titan with dry P and K blends.

charts

Figure 3. Results with Titan impregnated on dry fertilizer.

Conclusions

The days may be getting shorter, but with some simple planning, it’s easy to get more nutrient recovery from any fall dry fertilizer application. The end result is increased crop yields and total economic return from your growing program.

References:

  1. Sutch R. (2011). The Impact of 1936 Corn Belt Drought on American Farmers’ Adoption of Hybrid Corn. In: Libecap GD and Steckel RH, eds. The Economics of Climate Change: Adaptations Past and Present (p. 195 - 223) Chicago, Illinois: University of Chicago Press.
  2. Mosaic Company's Nutrient Removal App. Available at: http://www.agprofessional.com/news/Mosaic-introduces-new-nutrient-removal-data-app-135169923.html.
  3. IPNI Corn Belt Fertility Study: 2010

 

Read More
July 17, 2013 — Posted By Agricen

Growers on California’s central coast have recently faced the challenges of a depressed grape market, but, fortunately, that market is now returning to better days.

As the market improves, growers are looking for new technologies that can help them cost-effectively improve production. Accomplish technology is playing a role, with more and more grape growers in central coast areas like Santa Maria and Paso Robles seeing the efficacy of Accomplish as they incorporate it into their plant nutrition programs. Some of the benefits they are seeing include:

  • Larger, more developed roots
  • Better heat stress tolerance
  • A more vigorous growing vine
Edna Valley Grapes
Accomplish-treated wine grapes growing in Edna Valley, California. (Photo taken mid-May.)
 

Paso Robles
Wine grapes almost blooming in Paso Robles, California. (Photo taken mid-May.)
 

We are very excited to be helping central coast grape growers get better results in the field!
Read More
May 29, 2013 — Posted By Agricen

2050 InfographicMost experts estimate that the global population will exceed 9 billion people by the year 2050. That’s over 2 billion more people on the planet than there are today. Meeting the huge increase in global demand that comes with this population growth will put a tremendous strain on agricultural production. 

In fact, it is estimated that the agriculture industry will need to increase production by over 70% to meet this demand. This is no surprise when you consider all of the things agricultural products are used for: from food and clothing to fuels, plastics and many other everyday products.

Along with the world population, median income is also growing, especially in developing countries. Think about India, many African and South American countries and, especially, China. In all of these geographies, people are making more money, and so they are spending more on clothing, automobiles, and diets that increasingly include more meats, fruits, and vegetables, rather than traditional diets based on cereals and rice.

As population increases, more and more production acres are also getting planted. However, at least in developed countries like the United States and many Western European countries, growers will have to help meet food demand on 10-15% less arable land than is currently used for production today. At the same time, growers will have to face increased regulation at the local, state, and federal levels, as well as pressure from consumer and advocacy groups who want to influence how growers produce their crops.

Although some may see this as a negative environment in which to live and work, we see the future of agriculture as one of the brightest out of all the industries out there.

Is it even possible to more than double our production per acre? Absolutely! Look at corn production over the last 40 years. With the advent of corn hybridization, optimization of fertility practices, and use of biotechnology, we have more than doubled corn production per acre. More recently, we have increased national corn production per acre by an average of 16% in just six short years.

No one sector of the agricultural industry alone will be able to take production to the levels needed to meet future food demands. It will take a combined effort, ingenuity, and the focus of all agricultural sectors to help our growers meet these demands. New plant varieties, equipment, cultural practices, and innovative technologies will help us get there.

At Agricen, we are helping growers with biochemical-based technologies that help maximize nutrient availability and plant uptake. This, in turn, helps growers increase their yields and improve their crop quality, while also addressing environmental concerns. Our relationships with growers and partnerships with both Loveland Products and Nutrien Ag Solutions help us better understand the challenges that the agricultural industry faces every day. They also provide direction for our ongoing research and development efforts, which are focused on commercializing solutions to help the industry meet the demands of a growing global population.

Yes, the challenges are big, but we believe that we have the right tools, technologies and, most importantly, the right attitude to ensure that the future is a bright one.

 

Read More
May 6, 2013 — Posted By Agricen

denton

At our world-class biochemical production facility in Denton, Texas, we make some of Loveland Products’ fastest growing brands—Accomplish, Extract and Titan—as well as Agricen’s SoilBuilder, SoilLife and NutriLife brands. Completed in September 2011, the Denton plant was built to accommodate growing demands for these products, which were formerly only produced at our Pilot Point, Texas location.

At Denton, our products are produced through a patent-pending fermentation process using a new, state-of-the-art manufacturing platform. This process yields a highly concentrated extract that contains a diverse community of naturally occurring microorganisms and their biochemical byproducts (e.g., enzymes, organic acids). The end product is a biological and biochemical product that can be used as part of an integrated nutrient management program to improve plant nutrition.

Learn more about our products and their role in sustainable agriculture by downloading our Growing for the Future Booklet.

Access the Booklet

Read More
March 5, 2013 — Posted By Agricen

sciences_maud

Agricen’s sister company, Agricen Sciences, today announced the hiring of Maud Hinchee, PhD, as Chief Science Officer (CSO) of that company.

Formerly of ArborGen and Monsanto, Dr. Hinchee brings over three decades of experience in plant biology and biotechnology to Agricen Sciences, with specific expertise in functional genomics, collaborative research and development and related product development.

As CSO, she will lead scientific development activities focused on understanding how plant-soil interactions influence plant nutrition and health, and then guide her team on how to harness those discoveries to develop effective solutions that increase nutrient availability and uptake, improve agricultural sustainability and increase crop yields.

Please read the full press release here.

Read More
February 25, 2013 — Posted By Agricen

agricen_lpc

Today, we are proud to begin introducing ourselves as Agricen, a Loveland Products company. As Agricen, just as when we were Advanced Microbial Solutions (AMS), we will continue to provide growers with innovative plant nutrition technologies to increase nutrient availability and uptake, improve sustainability and increase yields—technologies that are helping crop producers feed a growing world.

Why have we changed our name?

Motivated by the scale, scope and sophistication of what we are doing now and the expansion we anticipate in the future, the new name reflects our transition and growth as a leader in the delivery of innovative, effective and sustainable plant nutrition tools. One example of that growth: Five years ago, we were producing just 130,000 gallons of Accomplish LM per year. Today, we produce 3 million gallons annually, and that number just keeps growing. The name also better reflects our relationship with Loveland Products, a strategic partner since August 2012. Agricen currently produces two of Loveland Products’ fastest growing plant nutrition brands, Accomplish LM and Titan PBA.

As Agricen, we will continue to innovate new, effective technologies that enable growers to adapt to the rapidly evolving requirements of modern agriculture, including the demand for more efficiency and sustainability in plant nutrition programs.

Along with the name change, we are also marking our first commercial product shipments from our new, state-of-the-art production facility located in Denton, Texas, which began this winter.

You can read the full press release here.

Read More
December 21, 2012 — Posted By Agricen

Agricen_TurfWe recently presented product chemistry and efficacy updates on Accomplish LM and Titan PBA to several Turf & Ornamental (T&O) teams.

The teams were very receptive to learning more about this plant nutrition technology and the different protocols for diverse T&O markets—from greenhouses, hydroponics, nurseries, and flowers, to turf, sod, golf courses, parks, homes, and cities.

Many members shared encouraging data they are getting from current test plots, as well as the favorable feedback they are hearing from their customers. The positive attention and willingness to start using this plant nutrition technology is very encouraging. Many have had some kind of experience using Accomplish and were interested in doing more. We’ll be working with them to get local data by putting out trial plots with Accomplish and/or Titan.

Learn more about the benefits of biocatalysts by viewing our T&O studies.

Access the Turf & Ornamental Studies

Read More